200=1.1v+0.06v^2

Simple and best practice solution for 200=1.1v+0.06v^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 200=1.1v+0.06v^2 equation:


Simplifying
200 = 1.1v + 0.06v2

Solving
200 = 1.1v + 0.06v2

Solving for variable 'v'.

Reorder the terms:
200 + -1.1v + -0.06v2 = 1.1v + -1.1v + 0.06v2 + -0.06v2

Combine like terms: 1.1v + -1.1v = 0.0
200 + -1.1v + -0.06v2 = 0.0 + 0.06v2 + -0.06v2
200 + -1.1v + -0.06v2 = 0.06v2 + -0.06v2

Combine like terms: 0.06v2 + -0.06v2 = 0.00
200 + -1.1v + -0.06v2 = 0.00

Begin completing the square.  Divide all terms by
-0.06 the coefficient of the squared term: 

Divide each side by '-0.06'.
-3333.333333 + 18.33333333v + v2 = 0

Move the constant term to the right:

Add '3333.333333' to each side of the equation.
-3333.333333 + 18.33333333v + 3333.333333 + v2 = 0 + 3333.333333

Reorder the terms:
-3333.333333 + 3333.333333 + 18.33333333v + v2 = 0 + 3333.333333

Combine like terms: -3333.333333 + 3333.333333 = 0.000000
0.000000 + 18.33333333v + v2 = 0 + 3333.333333
18.33333333v + v2 = 0 + 3333.333333

Combine like terms: 0 + 3333.333333 = 3333.333333
18.33333333v + v2 = 3333.333333

The v term is 18.33333333v.  Take half its coefficient (9.166666665).
Square it (84.02777775) and add it to both sides.

Add '84.02777775' to each side of the equation.
18.33333333v + 84.02777775 + v2 = 3333.333333 + 84.02777775

Reorder the terms:
84.02777775 + 18.33333333v + v2 = 3333.333333 + 84.02777775

Combine like terms: 3333.333333 + 84.02777775 = 3417.36111075
84.02777775 + 18.33333333v + v2 = 3417.36111075

Factor a perfect square on the left side:
(v + 9.166666665)(v + 9.166666665) = 3417.36111075

Calculate the square root of the right side: 58.458199688

Break this problem into two subproblems by setting 
(v + 9.166666665) equal to 58.458199688 and -58.458199688.

Subproblem 1

v + 9.166666665 = 58.458199688 Simplifying v + 9.166666665 = 58.458199688 Reorder the terms: 9.166666665 + v = 58.458199688 Solving 9.166666665 + v = 58.458199688 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '-9.166666665' to each side of the equation. 9.166666665 + -9.166666665 + v = 58.458199688 + -9.166666665 Combine like terms: 9.166666665 + -9.166666665 = 0.000000000 0.000000000 + v = 58.458199688 + -9.166666665 v = 58.458199688 + -9.166666665 Combine like terms: 58.458199688 + -9.166666665 = 49.291533023 v = 49.291533023 Simplifying v = 49.291533023

Subproblem 2

v + 9.166666665 = -58.458199688 Simplifying v + 9.166666665 = -58.458199688 Reorder the terms: 9.166666665 + v = -58.458199688 Solving 9.166666665 + v = -58.458199688 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '-9.166666665' to each side of the equation. 9.166666665 + -9.166666665 + v = -58.458199688 + -9.166666665 Combine like terms: 9.166666665 + -9.166666665 = 0.000000000 0.000000000 + v = -58.458199688 + -9.166666665 v = -58.458199688 + -9.166666665 Combine like terms: -58.458199688 + -9.166666665 = -67.624866353 v = -67.624866353 Simplifying v = -67.624866353

Solution

The solution to the problem is based on the solutions from the subproblems. v = {49.291533023, -67.624866353}

See similar equations:

| 6x^3-25x^2-24x+5=0 | | 119y^2-162y-945=0 | | -3.2=4.5+b | | 23t^2-54t-84=0 | | 3x(x+4)=240 | | 77x^2+75x-50=0 | | M+N=M*N-5 | | -4x^4+20x^3+8x^2= | | 24z^2+49z-55=10 | | 4/3=s/s-2 | | -2x^4+16x^3+14x^2= | | 24z^2+49z-65=0 | | 3/2r=-6/16 | | -41.15=9.1x+8.9 | | 3/7=5/3 | | 5x=48-2y | | 12/16=3z/4 | | (1+y)(3y-4)=0 | | a+56=170 | | 7x-(4-2x)=3(x+3)-1 | | 5x=48-2x | | 5(3(x+4)-2(1-x))-x-15=14x+45 | | x-38=126 | | 4(4c-1)-8=14c+4 | | x-38=129 | | -2.8x-3.62=-17.9 | | Sin(5x)=sin(3x) | | 75y=489 | | -0.2(4x-5)+2=0.4(3-4x) | | a^2-9a-63=0 | | 394+x=702 | | ((5x-18)+(4x+7))*2=360 |

Equations solver categories